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Introduction

A considerable number of experimental investigations 
have been made over the past several years in searching 
for tyrosine kinase inhibitors which act as therapeutic 
potential anticancer agents. Hamby et  al. [1] synthesized 
a series of pyrido[2,3-d]pyrimidine derivatives, acting as 
inhibitors of various tyrosine protein kinases broadly clas-
sified as receptor or non-receptor (cellular-Src, c-Src) types 
[2] and explored structure-activity relationships for these 
compounds. Klutchko and co-workers [3] synthesized 
2-aminopyrido[2,3-d]pyrimidin-7(8H)-ones as a novel class 
of potent, broadly active tyrosine kinase (TK) inhibitors and 
tested their in vivo and in vitro anticancer activities. The 
synthesis of a number of pyrido[19,29:1,5]pyrazolo[3,4-d]
pyrimidine derivatives by Showalter et al. [4] showed some 
interesting findings in anticancer effects. Schroeder et  al. 
[5] synthesized numerous aminopyrido[2,3-d]pyrimidin-
7-yl derivatives as the potential tyrosine kinase inhibitors 
and the anticancer activities of these compounds have 
been reported. The biochemical mechanisms of these 
compounds is to inhibit selected tyrosine kinases such as 
PDGFr, FGFr and c-Src at the ATP binding site and have 

been shown to exert growth delay effects on rapidly prolif-
erating cell lines relating to murine tumors such as colon 
cancer, breast cancer, glioma and ovarion tumors [2]. In 
their attempt to study structure-activity relationships of 
aminopyrido[2,3-d]pyrimidin-7-yl derivatives, Schroeder 
et al. determined experimental anticancer activities of such 
compounds by introducing various substituents at different 
positions of the fused ring system. But there is hardly any 
quantitative structure-activity relationships study using 
non empirical parameters on the aminopyrido [2,3-d]
pyrimidine-7-yl derivatives. QSAR studies where physical 
properties and physicochemical substituent constants are 
only used for the prediction of other more complex physi-
cochemical, biomedicinal and toxicological properties 
cannot explain the model completely as the physicochemi-
cal properties of the compounds concerned are not always 
available. Hence, there is a need to develop QSAR models 
based on theoretical molecular descriptors, which can be 
calculated directly from the chemical structure of the com-
pounds [6–11]. In this paper, an attempt has been made to 
formulate QSAR models from the standpoint of 2D and 3D 
approaches using calculated molecular descriptors that 
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Abstract
A series of aminopyrido[2,3-d]pyrimidin-7-yl derivatives acting as potential tyrosine kinase inhibitors having anti-
cancer activities have been considered in the present investigation for the quantitative structure-activity relation-
ship studies based on 2D and 3D QSAR approaches. For this purpose, various theoretical molecular descriptors 
were computed solely from the structures of these compounds. As the number of molecular descriptors greatly 
exceeds the number of observations, conventional regression does not produce reliable models and therefore, 
ridge regression methodology was used to solve this problem. The influence of different classes of molecular 
descriptors on the activity has been predicted and the most significant descriptors were obtained using the 
ridge regression models. Partial least squares (PLS) models were developed based on the training set for the 3D 
QSAR models of the above compounds. The influences of steric and electrostatic field effects generated by the 
contribution plots are discussed.
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could provide predictions of activities of such compounds, 
real or hypothetical.

One approach of treating 2D QSAR problems is to 
develop QSAR models based on a large set of theoretical 
molecular descriptors using ridge regression methodology 
[12] that ultimately predicts the influence of different class of 
calculated molecular descriptors on biological activities of 
the molecules considered for investigation. The purpose of 
three-dimensional quantitative structure-activity relation-
ship (3D-QSAR) study is to find the specific contributions of 
steric and electrostatic effects on the biological activities of 
the inhibitors [13]. It is evident from this study that the appli-
cation of 3D QSAR method generates QSAR models with 
improved internal and external prediction accuracy. One 
is led to the fact that such treatment provides better quality 
QSAR models by predicting biological activities of the new 
potential compounds of interest. It is believed that studies 
in this direction would reveal a useful approximation for 
the structural requirements in the design of more promis-
ing anticancer compounds, thus providing a better tool for 
rational drug design [6–11].

Materials and methods

Biological activity data of aminopyrido[2,3-d] 
pyrimidin-7-yl derivatives
The anticancer activities of aminopyrido[2,3-d]pyrimidin- 
7-yl derivatives for PDGFr, FGFr and c-Src kinase inhibition, 
have been reported by Schroeder et  al. [5] by considering 
structural modifications with the introduction of different 
aliphatic and aromatic substituents at 2, 6 and 7 positions of 
the aminopyrido[2,3-d]pyrimidin-7-yl fused ring system. The 
biological activity data, in the form of IC

50
, were determined 

experimentally [5]. All the biological activity values were 
converted in terms of pIC

50
 or log(1/IC

50
) where IC

50
 repre-

sents the concentration of these compounds that produce 
50% kinase inhibition. These activities may be considered 
for the development of a valid QSAR model. QSAR models 
developed by using experimental properties as independ-
ent variables, are essentially property-property correlation, 
whereas models developed by using calculated molecular 
descriptors solely from the molecular structures of these 
aminopyrido[2,3-d]pyrimidin-7-yl compounds will give 
some insight on structure-property correlations. Our aim is 
to utilize these activity data for creating structure property 
correlations, which may provide a better tool for the rational 
drug design [14]. Table 1 shows the chemical structure of all 
compounds along with their biological activity values.

Structural modifications at 2, 6 and 7 positions of the 
aminopyrido[2,3-d]pyrimidin-7-yl fused ring system are 
important for the development of potent compounds with 
desired pharmacological activity. It is seen from Table 1 that 
C-6 aryl substituent specially 2, 6-dicholorophenyl substi-
tution produces good potency of the compounds whereas 
introduction of tertiary butyl urea group at N-7 amino posi-
tion of these compounds increases activity. Alkyl amino side 
chain at the C-2 position is essential for producing optimal 

kinase inhibition. Extension of carbon backbone of alkyl 
amino side chain at C-2 along with terminator as N-(4-
methylpiperazino) or N,N-diethyl amino group, produces 
satisfactory kinase inhibitory activity.

Molecular descriptor calculation
Theoretical molecular descriptors are the numerical rep-
resentation of molecules. It encodes chemical information 
of molecular structures. These descriptors are more useful 
in the area of theoretical molecular design and discovery 
research. A recent trend in this direction is the use of theoret-
ical molecular descriptors, which can be calculated directly 
from molecular structure of the given compound using dif-
ferent level of molecular information ranging from 2D to 
3D geometry [15]. For the development of 2D QSAR mod-
els, descriptors such as physicochemical, constitutional, 
electrostatic, geometrical, and topological indices have 
been used in the present investigation. The physicochemi-
cal descriptors include AlogP98 value, AMR value, buffer 
solubility, polarizability, vapour density, water solubility, 
solvation free energy, and so forth. Constitutional descrip-
tors deals with composition of molecule, such as molecular 
weight, molecular formula, number of atoms, bonds, and 
rings, etc whereas electrostatic descriptors are based on 
the electronic and electrostatic structure of a molecule, for 
example, partial atomic charges, electronegetivity of the 
atoms, molecular electrostatic potential, etc. Geometrical 
descriptors are mainly the shape descriptors which are still 
more complex, encoding the three dimensional properties 
of molecules. Topological descriptors are the largest set of 
molecular descriptors, which may again be subdivided into 
two classes- topostructural, and topochemical descriptors. 
Topostructural descriptors encode information strictly 
on the neighbourhood and connectivity of atoms within 
the molecule, while the topochemical descriptors encode 
information relating to both the topology of the molecule 
and the chemical nature of atoms and bonds within it 
[8–11].

In our present study, the theoretical molecular descrip-
tors have been calculated using PreADMET software pack-
age [16], which is a web-based application for predicting 
ADME data and building drug-like and lead-like compounds 
for high throughput screening (HTS) and library of com-
binatorial chemistry using in-silico method. This program 
can calculate about 955 molecular descriptors including 
physicochemical, constitutional, electrostatic, geometrical 
and topological indices. The input file may be created either 
by drawing the chemical structure or using an appropri-
ate SMILES notation of the compound concerned. A total 
number of 495 molecular descriptors, useful for our pur-
pose, were calculated using PreADMET program and prior 
to model development, descriptors with zero values or con-
stant value for, or nearly all, of the compounds and that are 
completely correlated (r = 1.0) with another descriptor, are 
eliminated from the descriptor set. Table 2 represents the 
symbols of calculated molecular descriptors considered in 
our study.
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Table 1.  Structures of 2, 6, 7-substituted aminopyrido[2,3-d]pyrimidine-7-yl derivatives with activities.

4 5 

6 

7 
8 1 

2 

3 

R1 N 

N 

N 

Ar 

NHR2 

Comp 
No.

Substituents IC
50

 (M) pIC
50

 (M)

Ar R
1

R
2

PDGFr FGFr c-Src PDGFr FGFr c-Src

1 2,6-(cl)
2
Ph NH

2
t-BuNHCO 1.2 0.14 0.22 −0.079* 0.853* 0.657*

2 2,6-(cl)
2
Ph NH

2
H 16.0 3.0 0.21 −1.204 −0.477 0.677**

3 2,6-(cl)
2
Ph NH(CH

2
)

3
NEt

2
H 46.0 2.4 0.75 −1.662 −0.380 0.124**

4 2,6-(cl)
2
Ph NH(CH

2
)

3
NEt

2
t-BuNHCO 0.66 0.082 0.073 0.180* 1.086** 1.136**

5 2,6-(Me)
2
Ph NH

2
H 29.0 13.0 0.43 −1.462 −1.113 0.366*

6 2,6-(Me)
2
Ph NH

2
t-BuNHCO 0.34 0.40 0.11 0.468* 0.397* 0.958*

7 2,6-(Me)
2
Ph NH(CH

2
)

3
NEt

2
H 25.0 18.0 0.45 −1.397 −1.255 0.346**

8 2,6-(Me)
2
Ph NH(CH

2
)

3
NEt

2
t-BuNHCO 0.80 0.34 0.098 0.096* 0.468* 1.008*

9 2,6-(Br)
2
Ph NH

2
H - 13.0 1.6 - −1.113 −0.204

10 2,6-(Br)
2
Ph NH

2
t-BuNHCO 1.4 0.29 0.21 −0.146** 0.537** 0.677**

11 2,6-(Br)
2
Ph NH(CH

2
)

3
NEt

2
H - 8.3 0.76 - −0.919 0.119*

12 2,6-(Br)
2
Ph NH(CH

2
)

3
NEt

2
t-BuNHCO 1.1 0.19 0.097 −0.041** 0.721** 1.013**

13 2,3,5,6-(Me)
4
Ph NH

2
t-BuNHCO - 0.71 - - 0.148** -

14 3,5-(MeO)
2
Ph NH

2
H - 0.23 - - 0.638* -

15 3,5-(MeO)
2
Ph NH

2
t-BuNHCO - 0.048 - - 1.318* -

16 2,6-(cl)
2
Ph NH(CH

2
)

2
NEt

2
EtNHCO 12.0 1.3 2.6 −1.079 −0.113 −0.414

17 2,6-(cl)
2
Ph NH(CH

2
)

2
NEt

2
t-BuNHCO 9.0 1.8 4.1 −0.954 −0.255 −0.612

18 2,6-(cl)
2
Ph NH(CH

2
)

3
NEt

2
EtNHCO 1.3 0.13 0.094 −0.113** 0.886** 1.026**

19 2,6-(cl)
2
Ph NH(CH

2
)

3
NEt

2
i-PrNHCO 1.1 0.077 0.078 −0.041* 1.113* 1.107*

20 2,6-(cl)
2
Ph NH(CH

2
)

4
NEt

2
EtNHCO 0.21 0.049 0.018 0.677* 1.309* 1.744**

21 2,6-(cl)
2
Ph NH(CH

2
)

4
NEt

2
t-BuNHCO 0.36 0.048 0.0074 0.443* 1.318* 2.130*

22 2,6-(cl)
2
Ph NH(CH

2
)

4
NEt

2
cyclohexylNHCO 0.33 0.043 0.012 0.481* 1.366** 1.920**

23 2,6-(cl)
2
Ph NH(CH

2
)

4
NEt

2
PhNHCO 0.45 0.11 0.0075 0.346** 0.958** 2.124*

24 2,6-(cl)
2
Ph NH(CH

2
)

3
NMe

2
t-BuNHCO 0.68 0.075 0.12 0.167* 1.124* 0.920**

25 2,6-(cl)
2
Ph NMe(CH

2
)

3
NMe

2
t-BuNHCO 16.0 2.0 1.1 −1.204 −0.301 −0.041

26 2,6-(cl)
2
Ph NHCH

2
CMe

2
CH

2
NMe

2
t-BuNHCO 3.2 0.21 3.5 −0.505 0.677 −0.544

27 2,6-(cl)
2
Ph NH(CH

2
)

3
(morpholin-1-yl) t-BuNHCO 0.84 0.072 0.10 0.075* 1.142* 1.000*

28 2,6-(cl)
2
Ph NH(CH

2
)

3
(2-methylpiperidin-1-yl) t-BuNHCO 0.73 0.06 0.016 0.136** 1.221** 1.795*

29 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) H 9.6 0.45 0.18 −0.982 0.346* 0.744*

30 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) t-BuNHCO 0.47 0.051 0.032 0.327** 1.292* 1.494**

31 2,6-(cl)
2
Ph NH(CH

2
)

4
(N-methylpiperazin-1-yl) t-BuNHCO 0.28 0.035 0.010 0.552* 1.455* −2.000*

32 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) H

2
NCO 2.4 0.14 0.061 −0.380 0.853* 1.214**

33 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) EtNHCO 0.42 0.053 0.024 0.376* 1.275* 1.619*

34 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) allylNHCO 0.76 0.035 0.022 0.119* 1.455** 1.657**

35 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) i-PrNHCO 0.55 0.034 0.019 0.259* 1.468** 1.721**

36 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) n-octylNHCO 6.2 0.42 0.12 −0.792 0.376* 0.920*

37 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) benzylNHCO 2.5 0.062 0.030 −0.397 1.207* 1.522**

38 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) cyclohexylNHCO 0.37 0.029 0.031 0.431 1.537* 1.508*

39 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) adamantylNHCO 2.8 0.12 0.12 −0.447 0.920** 0.920**

40 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) BOCNH(CH

2
)

2
NHCO 4.2 0.067 0.15 −0.623 1.173* 0.823*

41 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) Me

2
N(CH

2
)

2
NHCO 2.4 0.075 0.02 −0.380 1.124* 1.698**

42 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) Et

2
NCO - 5.5 - - −0.740 -

43 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) PhNHCO 0.57 0.084 0.015 0.244* 1.075* 1.823*

44 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) 4-ClPhNHCO 1.8 0.12 0.04 −0.255 0.920* 0.397*

45 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) 4-BrPhNHCO 1.5 0.11 0.033 −0.176 0.958* 1.481*

46 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) 4-CF

3
PhNHCO 5.5 0.61 0.19 0.740 0.214* 0.721*

47 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) 3,4-(Cl)

2
PhNHCO 5.0 0.60 0.092 −0.698 0.221* 1.026*

48 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) 4-MePhNHCO 0.84 0.11 0.036 0.075* 0.958* 1.443*

49 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) 2-MeOPhNHCO 0.66 0.067 0.016 0.180 1.173* 1.795*

50 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) 3-MeOPhNHCO 0.91 0.063 0.029 0.040* 1.200** 1.537*

Table 1. Continued on next page
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For the purpose of 3D QSAR analysis, chemical structures 
of all the compounds have been drawn using the builder 
module in Molecular Design Suite (MDS) 3.5 software 
package [17]. Molecular descriptors such as steric and elec-
trostatic fields were calculated utilizing MDS 3.5 software 
which produces more than 6000 descriptors and prior to 
model development descriptors having zero values or same 
values were removed.

Ridge regression: A model building method in 2D QSAR
QSAR models have been generated utilizing different types 
of theoretical molecular descriptors such as physicochemi-
cal, constitutional and geometrical, electrostatic and topo-
logical which can be calculated solely from the structures 
of various sets of aminopyrido[2,3-d]pyrimidin-7-yl deriva-
tives. Consideration of theoretical molecular descriptors 
has often proved to be more powerful tools having wide 
applications in quantitative structure-activity relationships 
modeling [18]. To establish correlations between biological 
activity and structural or property descriptors of the differ-
ent sets of aminopyrido[2,3-d]pyrimidin-7-yl derivatives, 
it is essential to develop a regression or an input-output 
model. Multivariate regression analysis (MRA), one of 
the oldest data reduction methodologies, continues to be 
widely used in QSAR [19] as it does not impose any restric-
tion on the type and number of graphical invariants used in 
structure-property- activity studies. For a valid statistical sig-
nificance of the MRA, it is necessary to restrict the maximal 
number of descriptors, which will depend on the number of 
compounds investigated [20,21]. In order to avoid ambigui-
ties in the interpretation of regression, only few parameters, 
or ideally a single parameter may be used. Conventional 
regression (OLS) does not produce reliable models when the 
number of descriptors exceeds the number of observations 
[22,23]. The commonly used alternative regression method-
ologies include partial least squares (PLS) [24,25], principal 

components regression (PCR) [26] and ridge regression (RR) 
[12]. All these methods except OLS are intended to work 
when the independent variables are highly multicollinear 
and when the number of independent variables is substan-
tially greater than the number of observations. In addition, 
these regression methods make use of entire available pool 
of independent variables as opposed to subset regression 
which introduces bias and may result in the elimination of 
important parameters, leading to dramatic reductions in the 
variance of the estimated model coefficients. Formal com-
parisons have consistently shown subsetting to be less effec-
tive than the alternative methods, such as these, that retain 
all of the independent variables and use other approaches 
to deal with the rank deficiency [27]. In ridge regression, 
descriptors are transformed into principal components (PCs) 
and these PCs are used as new predictors. Unlike PCR, RR 
retains all principal components and shrinks them differen-
tially according to their eigen values. In PCR, descriptors are 
transformed into principal components after which a subset 
of PCs is used in ordinary least square regression, whereas, 
PLS are also related to principal component network, but 
the shrinkage is not based on Eigen values. Statistical theory 
suggests that RR is the best of the three methods and this has 
been considered by us for developing 2D QSAR models. The 
RR vector of regression coefficients, b, is given by:

b X X I X Y = (  + k )  T 1 T−

Where X is the matrix of descriptors, Y is the vector of 
observed activities, I is an identity matrix, and k is a non-
negative constant known as the “ridge” constant. If k = 0, RR 
reduces to conventional OLS regression.

Further model building methods in 3D QSAR
Geometry Optimization
Three dimensional quantitative structure-activity rela-
tionship studies of aminopyrido[2,3-d]pyrimidin-7-yl 

51 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) 4-MeOPhNHCO 0.68 0.074 0.033 0.167* 1.130* 1.481*

52 2,6-(cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) 1-naphthylNHCO 2.6 0.30 0.13 −0.414 0.522* 0.886*

53 2,6-(Cl)
2
Ph NH(CH

2
)

3
NEt

2
t-BuCH

2
CO - 27.0 19.0 - −1.143 −1.278

54 2,6-(Cl)
2
Ph NH(CH

2
)

3
NEt

2
Me

2
NCH - 10.0 4.0 - −1.000 −0.602

55 2,6-(Cl)
2
Ph NH(CH

2
)

3
NEt

2
EtNHCS 5.0 0.26 0.13 −0.698 0.585* 0.886*

56 2,6-(Cl)
2
Ph NH(CH

2
)

3
NEt

2
EtNHCNH - 2.7 1.4 - −0.431 −0.146

57 2,6-(Cl)
2
Ph NH(CH

2
)

4
NEt

2
(morpholyn-1-yl) 
(CH

2
)

3
NHCS

1.1 0.13 0.022 −0.041 0.886* 1.657*

58 2,6-(Cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) EtCH

2
CO - 3.7 2.7 - −0.568 −0.431

59 2,6-(Cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) t-BuCH

2
CO - 8.0 8.4 - −0.903 −0.924

60 2,6-(Cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) PhCH

2
CO - 6.8 3.3 - −0.832 −0.518

61 2,6-(Cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) PhSO

2
6.9 0.068 0.022 0.838 1.167* 1.657*

62 2,6-(Cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) PhNHCNH 37.0 2.8 0.86 −1.568 −0.447 0.065

63 2,6-(Cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) i-PrNHCN-i-Pr - 2.5 0.85 - −0.397 0.070

64 2,6-(Cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) t-BuNHCS 1.9 0.10 0.22 −0.278 1.000* 0.657*

65 2,6-(Cl)
2
Ph NH(CH

2
)

3
(N-methylpiperazin-1-yl) PhNHCS 2.2 0.32 0.022 −0.342 0.494* 1.657*

* Compounds considered in 3D QSAR analysis 
** Compounds belonging to test set in 3D QSAR analysis

Table 1.  Continued.

Comp 
No.

Substituents IC
50

 (M) pIC
50

 (M)

Ar R
1

R
2

PDGFr FGFr c-Src PDGFr FGFr c-Src
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Table 2.  List of calculated molecular descriptors used in 2D QSAR analysis.

Descriptor Classes Descriptor Names

Constitutional Descriptors No. amino groups primary, No. amino groups tertiary, No. amino groups secondary, No. amide groups, No. ester groups, 
No. halogen atoms, Molecular weight, Formal charge, No. Total atoms, No. Rotatable bonds, Fraction of Rotatable bonds, 
No. Rigid bonds, No. Rings, No. single bonds, No. double bonds, No. H-bond acceptors, No. H-bond donors, Ratio donors 
to acceptor, No. Aromatic rings, No. aromatic bonds, No. positive charged groups, No. positive chargable groups.

Geometrical Descriptors 2D-VDW surface, 2D-VDW volume, 2D-VSA hydrophobic, Fraction of 2D-VSA hydrophobic, 2D-VSA hydrophobic_sat, 
2D-VSA hydrophobic_unsat, 2D-VSA other, 2D-VSA polar, Fraction of 2D-VSA polar, 2D-VSA Hbond acceptor, 2D-VSA 
Hbond donor, 2D-VSA Hbond all, Fraction of 2D-VSA Hbond, Topological PSA, 2D-VSA positive chargable groups, 
Fraction of 2D-VSA chargable groups, 2D-VSA positive charged groups, 2D-VSA chargable groups.

Electrostatic Descriptors Max positive charge, Max positive hydrogen charge, Total negative charge, Total absolute atomic charge, Local dipole 
index, Relative negative charge, PNSA1 (Partial Positive Surface Area 1st type), PPSA2, PNSA3, DPSA2 (Difference in 
Charged Partial Surface Area), FPSA1 (Fractional charged partial positive surface area 1st type), FPSA3, FNSA2, WPSA1 
(Surface weighted charged partial positive surface area 1st type),WPSA3, WNSA2 (Surface weighted charged partial 
negative surface area 2nd type), RPCS (Relative positive charge surface area), Hydrophobic SA – MPEOE, Negative 
charged polar SA – MPEOE, SADH2 (Surface area on donor hydrogens 2nd type), CHDH1 (Charge on donatable 
hydrogens 1st type), CHDH3, SCDH2 (Surface weighted charged area on donor hydrogens 2nd type), SAAA1 (Surface 
weighted charged area on acceptor atoms 1st type), SAAA3, CHAA2 (Charge on acceptors atoms 2nd type), SCAA1 SCAA1 
(Surface weighted charged area on acceptor atoms 1st type), SCAA3, HRPCG, HRNCS, HRNCG, Max negative charge, 
Total positive charge, Charge polarization, Polarity parameter, Relative positive charge, PPSA1, PPSA3, PNSA2, DPSA1, 
DPSA3, FPSA2, FNSA1, FNSA3, WPSA2, WNSA1, WNSA3, RNCS, Positive charged polar SA – MPEOE, SADH1 (Surface 
area on donor hydrogens 1st type), SADH3, CHDH2, SCDH1, SCDH3, SAAA2, CHAA1, CHAA3, SCAA2, ACGD, HRPCS, 
CHGD.

Topological Descriptors Total structure connectivity index, Chi 0 (Simple zero order chi index), Chi 1, Chi 2, Chi 3 path (Simple third order path 
chi index), Chi 3 cluster (Simple 3rd order cluster chi index), Chi 4 cluster, Chi 4 path, Chi 5 path, Chi 4 path/cluster 
(Simple 4th order path/cluster chi index), VChi 0 (Valance zero order chi index), VChi 1, VChi 2, VChi 3 path (Valance 
3rd order path chi index), VChi 4 path, VChi 3 cluster, VChi 4 cluster, VChi 4 path/cluster, VChi 5 path, Kier shape 1 
(encodes the degree of cyclicity in the graph, decreases as graph cyclicity increases), Kier shape 3 (encodes the degree of 
separated branching in the graph,increases as the degree of separation in branching increases.), Kier alpha 1 (1st Order 
Kappa Alpha Shape Index), Kier alpha 2, Kier alpha 3, Kier flexibility, Kier symmetry index, Delta Chi 0 (Delta zero order 
chi index), Delta Chi 1, Delta Chi 2, Delta Chi 3 path, Delta Chi 3 cluster, Delta Chi 4 path, Delta Chi 4 cluster, Delta Chi 5 
path, Delta Chi 4 path/cluster, Difference chi 0 (Difference simple zero order chi index), Difference chi 1, Difference chi 2, 
Difference chi 3, Difference chi 4, Difference chi 5, IC (information content index), BIC (bond information content), CIC 
(complementary information content), SIC (structural information content), IAC total (total information index of atomic 
composition), I_adj_equ (Information index based on the vertex adjacency matrix equality), I_adj_mag (Information 
index based on the vertex adjacency matrix magnitude), I_adj_deg_equ (Information index based on the degree 
adjacency matrix equality), I_adj_deg_mag, I_dist_equ (Information index based on the distance matrix equality), I_
dist_mag (Information index based on the distance matrix magnitude), I_edge_adj_equ (Information index based on the 
edge adjacency matrix equality), I_edge_adj_mag (Information index based on the edge adjacency matrix magnitude), I_
edge_adj_deg_equ, I_edge_adj_deg_mag, I_edge_dist_equ, I_edge_dist_mag, Wiener index (Half-sum of the off-diagonal 
elements of the distance matrix of a graph), Hyper Wiener index, Harary index (Half-sum of the off-diagonal elements 
of the reciprocal molecular distance matrix), 1st Zagreb (1st Zegreb index), 2nd Zagreb, Quadratic index, Rouvray index, 
2-MTI (Schultz Molecular Topological Index (MTI)), 2-MTI prime (Schultz MTI by valence vertex degrees), Gutman 
MTI, Graph diameter, Graph radius, Graph Petitjean, Eccentric connectivity index, Eccentric adjacency index, Platt 
number, Odd-even index, Vertex degree-distance index, Ring degree-distance index, Balaban index JX, Balaban index 
JY, Xu (Xu index), Superpendentic index, Unipolarity_distance_matrix, Centralization_distance_matrix, Dispersion_
distance_matrix, SC-0 (Subgraph Count Index of order 0), SC-1, SC-2, SC-3 path, SC-3 cluster, SC-4 path, Solvation chi 
4 path/cluster, Solvation chi 5 path, VS-0 (Valence Shell Count of order 0), VS-1, VS-2, VS-3, VS-4, VS-5, Molecular walk 
count 2, Molecular walk count 3, Molecular walk count 4, Molecular walk count 5, Path/walk 2, Path/walk 3, Path/walk 
4, Path/walk 5, Narumi ATI (Narumi simple topological index (log)), Narumi HTI (Narumi harmonic topological index), 
Narumi GTI (Narumi geometric topological index), Pogliani index, Ramification index, Degree complexity, Graph vertex 
complexity, Graph distance complexity, Graph distance index, Mean square distance index, Mean distance deviation, 
Edge Wiener index, Edge Hyper Wiener index, Edge MTI, Edge Gutman MTI, Edge connectivity index, E-state SsCH3, 
E-state SssCH2, E-state SdsCH, E-state SsssCH, E-state SdO, E-state S_hydrophobic, E-state S_hydrophobic_unsat, E-state 
S_polar, E-state S_hbond_donor, E-state SHdsCH, E-state SHCHnX, E-state SH_hydrophobic, E-state SdssC, E-state 
SsssN, E-state S_hydrophobic_sat, E-state S_none, E-state S_hbond_acceptor. E-state SsNH2, E-state SssNH, E-state SssO, 
E-state SsCl, E-state SsBr, E-state SHsNH2, E-state SHssNH, E-state SHCsats, E-state SHCsatu, , E-state SH_hbond_donor, 
E-state SaasC, E-state SssssC, E-state SdNH, E-state SaaN, E-state SdSr, E-state SHdNH, E-state SH_polar, E-state SH_
positive_charged_group, E-state SaaCH, E-state SaaaC, E-state S_positive_charged_group, E-state SdsN, E-state SHaaCH, 
SC-4 cluster, SC-5 path, SC-7 path, SC-9 path, Solvation chi 0, Solvation chi 2, Solvation chi 3, Solvation chi 4 cluster, 
Cluster, SC-4 path/cluster, SC-6 path, SC-8 path, SC-10 path, Solvation chi 1, Solvation chi 3 path, Solvation chi 4 path.

Physicochemical 
Descriptors

Polarizability_Miller, SKlogP value, SKlogS value, SKlogPvp, SKlogS_buffer,SK_BP, AlogP98 value, Solvation Free Energy, 
SKlogD value, Water solubility, Vapor pressure, Buffer solubility, SK_MP, AMR value, AlogP98 002 C, AlogP98 004 C, 
AlogP98 006 C, AlogP98 008 C, AlogP98 024 C, AlogP98 026 C, AlogP98 040 C, AlogP98 047 H, AlogP98 049 H, AlogP98 051 
H, AlogP98 053 H, AlogP98 059 O, AlogP98 067 N, AlogP98 069 N, AlogP98 094 Br, AlogP98 001 C, AlogP98 003 C, AlogP98 
005 C, AlogP98 011 C, AlogP98 025 C, AlogP98 041 C, AlogP98 046 H, AlogP98 050 H, AlogP98 052 H, AlogP98 060 O, 
AlogP98 068 N, AlogP98 070 N, AlogP98 072 N, AlogP98 074 N, AlogP98 089 Cl, AlogP98 108 S.
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942    S. Nandi and M. C. Bagchi

derivatives were performed using Molecular Design 
Suite software version 3.5 [17]. For the purpose of our 3D 
QSARs, the compounds having higher inhibitory activity 
against three tyrosine kinases were selected and it has 
been indicated by single asterisk in Table 1. The three-
dimensional structures of all selected compounds were 
constructed using the builder module in MDS 3.5 and 
their geometries were subsequently optimized using the 
Merck Molecular force field (MMFF) and MMFF charge 
[28]. Energy minimizations were performed considering 
a dielectric constant of 1.0 and the convergence criterion 
is 0.01 Kcal/mol.

Alignment of molecules
In 3D QSAR analysis, the most crucial step is the molecular 
alignment. This method is based on the conformational flex-
ibility of molecules, thus representing the relative orienta-
tion of molecules in 3D space. The molecular alignment util-
ity can be used to study the shape variation with respect to 
the base structure selected for alignment. This is an attempt 
to identify the best overlapping between the structures of 
molecules. In the present study, the molecules of the dataset 
were aligned by template based method [13] where a tem-
plate structure is defined and used as a basis for alignment 
of a set of molecules and a reference molecule was chosen 
on which the other molecules of the align dataset gets align 
considering the chosen template. The reference molecule is 
chosen in such a way that the molecule should be in the most 
stable and bioactive conformation state among the series of 
molecules considered. The following Figure 1 is used as the 
template for alignment by considering common elements of 
the series.

The molecules such as 34, 15 and 65 were chosen for ref-
erence in PDGFr, FGFr and c-Src cases respectively. After 
optimizing, the template structure and reference molecule 
are used to superimpose all molecules from the series 
in three cases to obtain optimal alignment between the 
molecular structures necessary for ligand-receptor interac-
tions [29]. The superimpositions of all molecules based on 
minimizing RMSD in the software in three cases are shown 
in Figures 2, 3 and 4.

The scope of the present investigation lies in con-
sidering all the above superimposed conformations of 
aminopyrido[2,3-d]pyrimidin-7-yl derivatives in the three 

cases. These conformations are presumed to be the biolog-
ically active structures, overlaid in their common binding 
mode. Each conformation is taken in turn, and the molec-
ular fields around it are calculated. This is achieved by the 
generation of three-dimensional rectangular grid around 
the set of aligned molecules. Steric and electrostatic field 
interaction energies around the aligned molecules were 

2

4 5

6

7
N
8

N
1

3 N

Figure 1.  6-Phenyl pyrido[2,3-d]pyrimidine.

Figure 2.  3D view of aligned molecules for PDGFr.

Figure 3.  3D view of aligned molecules for FGFr.

Figure 4.  3D view of aligned molecules for c-Src.
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calculated at each grid point considering methyl probe of 
charge +1 with 10.0 kcal/mole electrostatic and 30.0 kcal/
mole steric cut-off and the charge type of Gasteiger-Marsili 
[30] was set. A value of 1.0 was assigned to the dielectric 
constant. These electrostatic and steric fields are used as 
descriptors for 3D QSAR analysis.

Partial least squares (PLS)
Partial Least Squares methodology was implemented to 
derive 3D QSAR models of aminopyrido[2,3-d]pyrimidin- 
7-yl derivatives for PDGFr, FGFr and c-Src kinase inhibitors. 
Steric and electrostatic field descriptors were calculated 
and used as independent variables and pIC

50
 values of the 

compounds were considered as dependent variable in the 
PLS regression analysis. Internal validations of the models 
in all the three cases were made in terms of cross-validated 
q2 and external predictability of the developed models were 
performed by calculating predictive r2 (Pred_r2) using fol-
lowing equations [31,32].

q
PRESS

(y y )

(y y )

(y y )i
2

i=1

N

i pred,i
2

i=1

N

i
2

i=1

N
2 1 1= −

−
= −

−

−
∧ ∧

∑

∑

∑

PRESS y yi pred,i
i=1

N

= −∑( )2

Where, PRESS denotes predicted sum of squared deviations 
between the observed activities (y

i
) and predicted activities 

(y
pred,i

) of the i-th molecules in the training set whereas ( y
∧

) is 
the mean of observed activities of all molecules in the train-
ing set.

Pred_r
PRESS

SSD

(y y )

(y y )

i pred,i
2

i=1

N

i
2

i=1

N
2 1 1= − = −

−

−

∑

∑
∧

Where, y
i
 and y

pred,i
 are the observed activities and predicted 

activities of i-th molecules in the test set.

SSD y yi
i=1

N

= −
∧

∑( )2

SSD indicates sum of squared deviations between the 
observed activities (yi) of i-th molecules in the test set and 
mean activities ( y

∧
) of all molecules in the training set.

Results and discussion

2D QSAR results
An attempt has been made to generate 2D QSAR models 
based on computed molecular descriptors calculated solely 
from the structures of aminopyrido[2,3-d]pyrimidin-7-yl 
derivatives using ridge regression (RR) methodology. The 

NCSS software package [33] was used for the RR analysis. 
Ridge regression models demonstrate the influence pattern 
of various types of theoretical molecular descriptors viz. 
constitutional and geometrical, electrostatic, topological 
and physicochemical on the activities of aminopyrido[2,3-d]
pyrimidin-7-yl derivatives. Table 3 provides the regression 
summary for QSARs of three sets of aminopyrido[2,3-d]
pyrimidin-7-yl derivatives considered in the present 
investigation.

In case of PDGFr and FGFr, physicochemical descrip-
tors contribute maximum influences having R2 values of 
0.956 and 0.946 respectively. This is followed by topological, 
electrostatic and constitutional and geometrical descriptors. 
From the table it is seen that topological descriptors provide 
a significant R2 value of 0.912 and 0.940 for the above two 
kinase inhibition whereas electrostatic descriptors produce 
an R2 values of 0.862 and 0.861. But constitutional and geo-
metrical descriptors produce much inferior models having 
R2 values of 0.687 and 0.750 for the first two cases. In consid-
ering RR models for c-Src, contribution of topological indi-
ces is maximum having a R2 value of 0.768. The domination 
patterns of physicochemical and electrostatic descriptors 
over constitutional and geometrical descriptors are contin-
ued. Therefore, the ridge regression models generated by 
computed molecular descriptors can provide a good quality 
predictive model for the aminopyrido[2,3-d]pyrimidin-7-yl 
derivatives.

Another important statistical metric is the t value associ-
ated with each model, defined as the descriptor coefficient 
divided by its standard error [34]. Descriptors with large |t| 
values are important in the predictive model and, as such, 
can be examined in order to gain some understanding of 
the nature of property or activity of interest. Tables 4–6 
indicate significant descriptors responsible for the good 
model predictions based on t value in case of PDGFr, FGFr 
and c-Src, respectively.

3D QSAR results
In the present paper, three dimensional quantitative 
structure-activity relationship studies of aminopyrido[2,3-
d]pyrimidin-7-yl derivatives having inhibitory activities 
against PDGFr, FGFr and c-Src kinases, have been per-
formed by applying stepwise variable selection method 
coupled with PLS model building technique. For the 
purpose, total data set was divided into training and test 

Table 3.  Regression summary for QSAR models of aminopyrido[2,3-d]
pyrimidine-7-yl derivatives.

Molecular Descriptors R2 (Ridge regression)

PDGFr (N = 52) FGFr (N = 65) c-Src (N = 61)

(i) �Constitutional and  
Geometrical

0.687 0.750 0.560

(ii) Electrostatic 0.862 0.861 0.713

(iii) Topological 0.912 0.940 0.768

(iv) �Physicochemical  
Descriptors

0.956 0.946 0.759

(1)

(2)

(3)

(4)
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sets using sphere exclusion algorithm which allows con-
structing training set covering all descriptor space areas 
occupied by representative points and this method indi-
cates diversity of sampling procedure [35]. Compounds 
with double asterisks in Table 1 were selected as test 
molecules for further model validation. The model quality 
for the training set was determined by calculating r2, r2se, 
cross-validated q2 and q2se whereas external validation in 
terms of predictive r2 (pred_r2) was done for the test set of 
compounds.

In case of PDGFr, PLS model for steric and electrostatic 
fields in the training set was obtained as follows:

Activity (PDGFr)  0.690  (0.023) E_1276

                 

= +
                          (0.017) S_1368  (0.054) E_1255+ +   

                                          (0.010) S_797+    (0.011) E_1516.−

n = 18, df = 14, r2 = 0.936, q2 = 0.866, F test = 67.909, r2 se = 
0.059, q2 se = 0.086, no. of optimum components = 3

Similarly, 3D QSAR models using PLS regression for 
FGFr and c-Src were developed with the following statistical 
parameters.

Activity (FGFr)  0.592  (0.120) E_802  (0.063) E_1097 

 

= + −
                                       (0.110) E_1074  (+ + 00.080) E_1812 

                                       (0.+ 0075) E_2243  (0.031) E_972.+

n = 34, df = 31, r2 = 0.812, q2 = 0.764, F test = 66.914, r2 se = 
0.166, q2 se = 0.185, no. of optimum components = 2

Activity (c-Src)  0.400  (0.111) S_604  (0.016) S_1798 = − +
                                        (0.031) S_1952  + + ((0.046) E_1974 

                                       (0+ ..025) S_1112  (0.014) S_1808−

n = 31, df = 28, r2 = 0.853, q2 = 0.804, F test = 81.527, r2 se = 
0.307, q2 se = 0.355, no. of optimum components = 2

Here, n represents number of observations, df is the degree 
of freedom, r is the square root of the multiple R-square for 
regression, q2 is the cross-validated r2, F is the F-statistics for 
the regression model, and se is the corresponding standard 
error estimation.

The results indicate that 3D QSAR models for PDGFr, 
FGFr and c-Src generates 86.6%, 76.4% and 80.4% internal 
model prediction respectively.

The above QSAR models were validated on the compounds 
forming test sets and biological activity of test molecules 
were predicted. Tables 7–9 represent predicted activities of 

Table 6.  Significant descriptors responsible for the good model 
predictions based on t value in case of c-Src.

Descriptor Classes Significant Descriptors t-value

Constitutional and 
Geometrical

2D-V2D-VSA Hydrophobic −193.365

SA Hydrophobic sat −187.026

2D-VDW surface −184.764

2D-VDW volume 130.961

Electrostatic DPSA2 396.122

PPSA2 361.811

WPSA1 −337.542

Physicochemical SK_MP −82.067

Buffer solubility 47.261

SK_BP −20.049

Topological Edge Gutman MTI −84542.709

Edge Hyper Wiener Index −60777.689

Edge MTI −41342.410

Hyper Wiener Index −30509.071

Table 5.  Significant descriptors responsible for the good model 
predictions based on t value in case of FGFr.

Descriptor Classes Significant Descriptors t-value

Constitutional  
and Geometrical

2D-VDW volume 250.327

2D-VSA Hydrophobic −211.353

Molecular weight −162.131

Electrostatic DPSA2 598.581

PPSA2 565.670

WPSA1 −64.582

RPCS(Relative positive charge surface 
area) 

62.952

Physicochemical SK_BP −75.313

SK_MP −48.297

Buffer solubility 40.836

AMR value 32.921

Topological Edge Hyper Wiener Index −45608.666

Hyper Wiener Index −23163.730

Gutman MTI −21242.028

Edge Gutman MTI 16498.756

Graph Distance Index −11977.933

Edge MTI 10357.197

Table 4.  Significant descriptors responsible for the good model 
predictions based on t value in case of PDGFr.

Descriptor Classes Significant Descriptors t-value

Constitutional and 
Geometrical

Molecular weight 112.404

2D van der Waals surface area  
(2D-VSA) hydrophobic sat

−57.988

2D van der Waals(2D-VDW) surface −54.183

No. total atoms 48.063

No. rigid bonds −38.582

2D-VDW volume −35.660

Electrostatic (WPSA2) Surface weighted charged 
partial positive surface area 2nd type

−676.189

DPSA2(Difference in Charged Partial 
Surface Area)

668.014

PPSA2(Partial Positive Surface Area) 247.150

PNSA2(Partial Negative Surface Area) −243.327

Physicochemical SK_BP (added models of boiling 
point)

783.935

SK_MP (added models of melting 
point)

−159.166

AMR (calculated molecular 
refractivity index)

79.612

Buffer solubility 45.434

Solvation Free energy −40.675

Topological Edge Hyper Wiener Index −67798.454

Edge Gutman MTI 39032.406

Graph Distance Index −24144.376

Weiner Index 1511.972

(5) (7)

(6)
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compounds belonging to the test sets of PDGFr, FGFr and 
c-Src cases, using Equations (5), (6) and (7), respectively.

The plot of observed versus predicted activities for the 
training and test sets of compounds in all the three cases are 
represented in Figures 5, 6 and 7. The external predictability 
of the QSAR models generated on test sets are characterized 
by pred_r2 and pred_r2se which are then calculated.

For PDGFr, pred_r  = 0.703, pred_r se = 0.159.

For FGFr, pr

2 2

eed_r  = 0.553, pred_r se = 0.287.

For c-Src, pred_r  = 0.6

2 2

2 660, pred_r se = 0.352.2

The plot of observed versus predicted activities shows that 
the predicted activities of all the test compounds are in good 
agreement with their corresponding experimental activities 
and the fits are excellent.

−0.5
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Figure 7.  Plot of observed vs. predicted activities for training and test 
sets of c-Src.

Table 7.  3D QSAR derived predicted activities for PDGFr.

Test molecules Observed Activity Predicted Activity

10 −0.146 −0.106

12 −0.041 0.067

18 −0.113 −0.033

23 0.346 0.228

28 0.136 0.134

30 0.327 0.081

Table 8.  3D QSAR derived predicted activities for FGFr.

Test molecules Observed Activity Predicted Activity

4 1.086 1.142

10 0.537 0.904

12 0.721 0.981

13 0.148 0.266

18 0.886 1.007

22 1.366 1.086

23 0.958 1.272

28 1.221 0.878

34 1.455 0.949

35 1.468 1.130

39 0.920 0.931

50 1.200 1.112

Table 9.  3D QSAR derived predicted activities for c-Src.

Test molecules Observed Activity Predicted Activity

2 0.677 0.452

3 0.124 0.429

4 1.136 1.271

7 0.346 0.435

10 0.677 0.915

12 1.013 1.287

18 1.026 1.351

20 1.744 1.024

22 1.920 1.324

24 0.920 1.261

30 1.494 1.287

32 1.214 1.319

34 1.657 1.339

35 1.721 1.402

37 1.522 1.310

39 0.920 1.311

41 1.698 1.323
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Figure 6.  Plot of observed vs. predicted activities for training and test 
sets of FGFr.

Figure 5.  Plot of observed vs. predicted activities for training and test 
sets of PDGFr.
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Contribution plot of steric and electrostatic field inter-
actions indicates relative regions of the local fields (steric 
and electrostatic) around the aligned molecules, leading 
to activity variation in the model [36]. The steric descriptor 
with positive or negative coefficients shows a region where 
bulky substituent is favored or disfavored, respectively. The 
electrostatic descriptor with a positive coefficient indicates 
a region favorable for electropositive group, while a negative 
coefficient indicates that an electronegative (electron donat-
ing) group is required at the position [37]. Figure 8 signifies 
contribution plot of steric and electrostatic field interactions 
for PDGFr.

From Equation (5) and Figure 8, it is clear that the pres-
ence of two steric descriptors (S_1368 and S_797) with 
positive coefficients indicates that the bulky substituents 
are favorable at C-6 and C-2 positions of the aligned mole-
cules. The presence of electrostatic descriptors (E_1276 and 
E_1255) with positive coefficients and E_1516 with nega-
tive coefficient indicates electropositive and electronega-
tive group should be substituted at the N-7 urea position. 
Figure 9 and 10 illustrate contribution plot of steric and 
electrostatic field interactions for FGFr and c-Src kinases.

Equation (6) and Figure 9 depict that electrostatic influ-
ences are most prominent in this case. Electrostatic descrip-
tors with positive coefficients (E_802, E_972 and E_1812) 
indicate electropositive groups on C-2 and C-6 positions. N-7 
urea substituent should possess electropositive as well as 
electronegative groups as indicated by the presence of elec-
trostatic descriptors (E_2243 and E_1074) with positive coef-
ficient and E_1097 with negative coefficient. Again, Equation 
(7) and Figure 10 illustrate that the steric effects are predomi-
nant in the third case where steric descriptors (S_1798, S_1952 
and S_1112) with positive coefficients mean the presence of 
bulky substituents at C-2 and N-7 urea positions and the steric 
descriptors (S_604 and S_1808) with negative coefficients 
indicate that bulky groups are unfavorable at the 4th and 5th 
positions of the aminopyrido[2,3-d]pyrimidin-7-yl template.

Contribution plot of steric and electrostatic interac-
tions elucidates the structure-activity relationship of 

these compounds. According to experimental findings, 
increased anticancer activity by the inhibition of PDGFr, 
FGFr and c-Src kinases were observed due to introduction 
of alkyl amino substituent at C-2, aryl substituent at C-6 
and urea group at N-7 positions of the aminopyrido[2,3-
d]pyrimidin-7-yl template. Compounds with long alkyl 
amino side chain at C-2, consisting of three carbons along 
with N-(4-methylpiperazino) as a terminator or four car-
bons terminating in N,N-dimethyl amino group moder-
ately improves activity because the terminator possesses 
steric constraints around the distal amine [5]. It was also 
shown that crystal structures of these substituted urea 
derivatives maintain good activity due to forming intra 
molecular electrostatic field between the N-7 urea and N-8 
of the pyrido pyrimidine template [5,38]. The experimental 
observations are strongly in lines with our theoretical find-
ings based on contribution plots of steric and electrostatic 
field interactions shown in Figures 8, 9 and 10 where steric 
and electrostatic fields were enacting on C-2 and N-7 posi-
tions around the aligned molecules in both PDGFr and 

S_797

S_1368

E_1255

E_1796 E_1516

Figure 8.  Contribution plot of steric and electrostatic field interactions 
for PDGFr.

Figure 9.  Contribution plot of steric and electrostatic field interactions 
for FGFr.

Figure 10.  Contribution plot of steric and electrostatic field interactions 
for c-Src.
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c-Src cases. Electrostatic field effects are most prominent 
in FGFr and steric influences are predominant in c-Src. 
This is also explained by 2D QSAR using ridge regression 
methodology where electrostatic field has significant R2 
value of 0.778 in FGFr but the electrostatic contribution in 
c-Src seems to be very low.

Conclusion

Ridge regression results show the contribution of different 
class of structural descriptors on anticancer activities of the 
aminopyrido[2,3-d]pyrimidin-7-yl derivatives. The 2D QSARs 
reported in Table 3 show that the calculated molecular descrip-
tors can provide good quality predictive models for the com-
pounds considered in the present investigation. Contribution 
plot of steric and electrostatic field descriptors generated by 
3D QSARs shows the requirement of favourable group sub-
stituents in the 2-, 6- and 7- positions of aminopyrido[2,3-d]
pyrimidin-7-yl template. In our effort to study the influence 
of steric and electrostatic descriptors in 3D QSAR models and 
contribution plots, it is observed that steric and electrostatic 
fields are acting on C-2 and N-7 positions around the aligned 
molecules of the PDGFr and c-Src kinases as shown in Figures 
8 and 10. Again, for the FGFr and c-Src kinases, one is led to 
the fact that electrostatic fields are most prominent in FGFr 
and steric influences are predominant in c-Src. The present 
studies justify the development of models over the training set 
of compounds which are capable of predicting the activities 
of test compounds with reasonable accuracy. The success-
ful development of predictive QSAR models in this direction 
affords rational anti cancer drug design.
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Scientific and Industrial Research, New Delhi 110001, India 
for the grant of a Senior Research Fellowship.
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